

BOOK PARTS

Table of contents

First part: Algebra 11

Logic and Sets of Numbers13
Relations and Functions15
Domain17
Even and Odd Functions19
Limits and Continuity21
Increasing, Decreasing, Constant Functions and Extreme values23
Average Rate of Change25
Parent Functions and Transformations27
Exponential Functions29
Logarithmic Functions
Operations with Polynomials
Rational and Radical Expressions35
Direct and Inverse Proportions
Matrices
Determinants and Area of Triangle41
Complex numbers43
Arithmetic Sequences and series45
Geometric Sequences and series47

Combinations and binomial theorem49
Vectors51
Scalar (dot) Product and Angle Between Two Vectors53
Vector cross and Area Parallelogram55
Polar coordinates and De Moivre's Theorem

Second part: Geometry59

Angles and Parallel lines61
Triangles63
Quadrilaterals shapes65
Interior and exterior angles of polygons67
Reflection and translations69
Rotation, Dilation and Tiling71
Circles (1)73
Circles (2)75
Circles (3)77
Slope and Forms of Linear Equations79
Similarity in Triangles and Polygons81
Parabolas83

Ellipses and Circles85

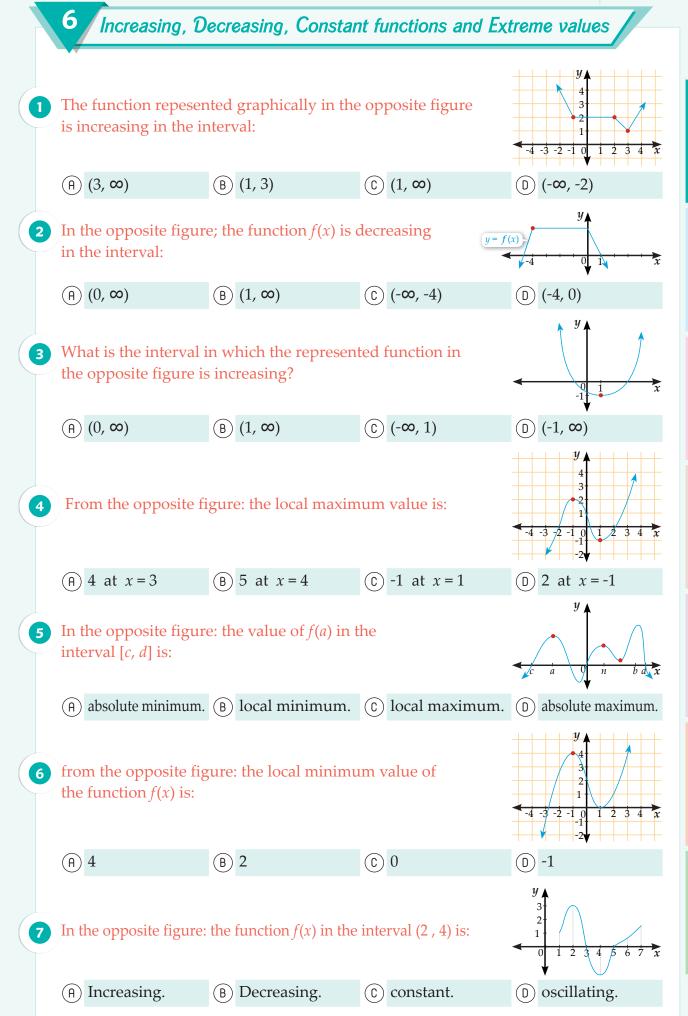
Hyperbola and Classifications
of Conic Sections87

Third part: Trigonometry.....89

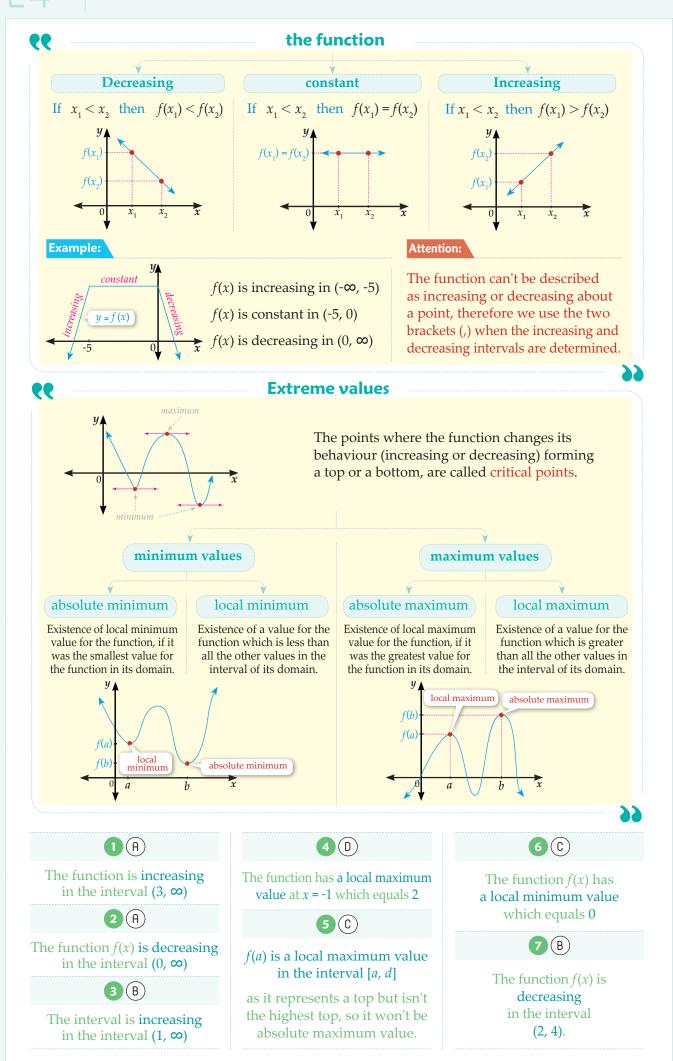
Trigonometric Functions in Right Triangles91
Law of Cosines, Law of Sines and Area of Triangle93
Trigonometric Identities95
Follow Identities and trigonometric equations97

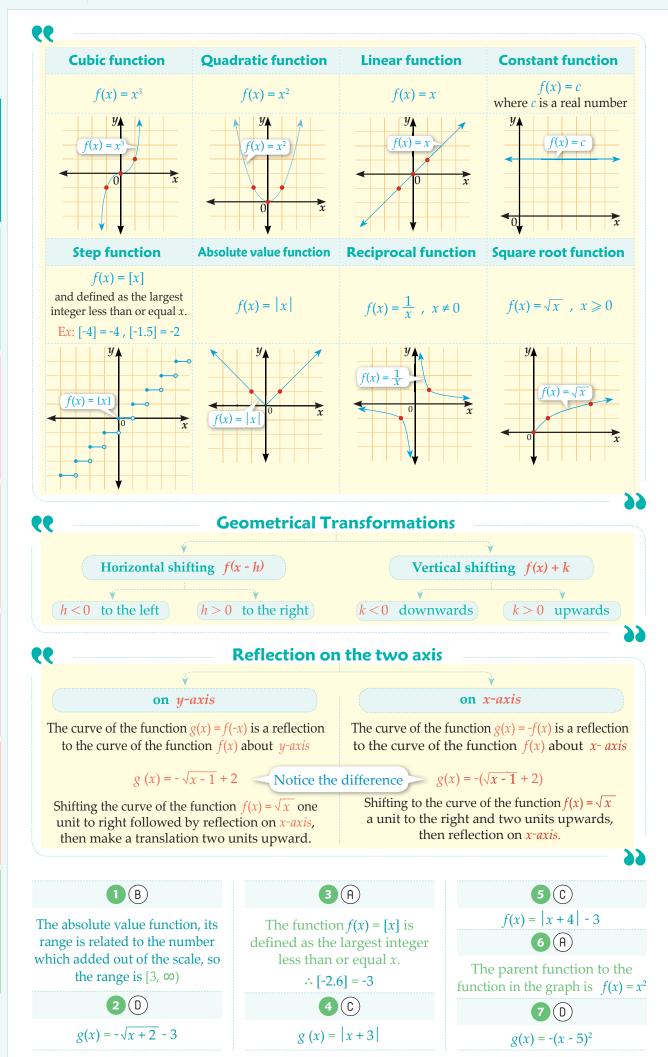
Limits	.101
Derivatives	.103
Calculation of Integrations	.105

Fifth part: Statistics and probability 107

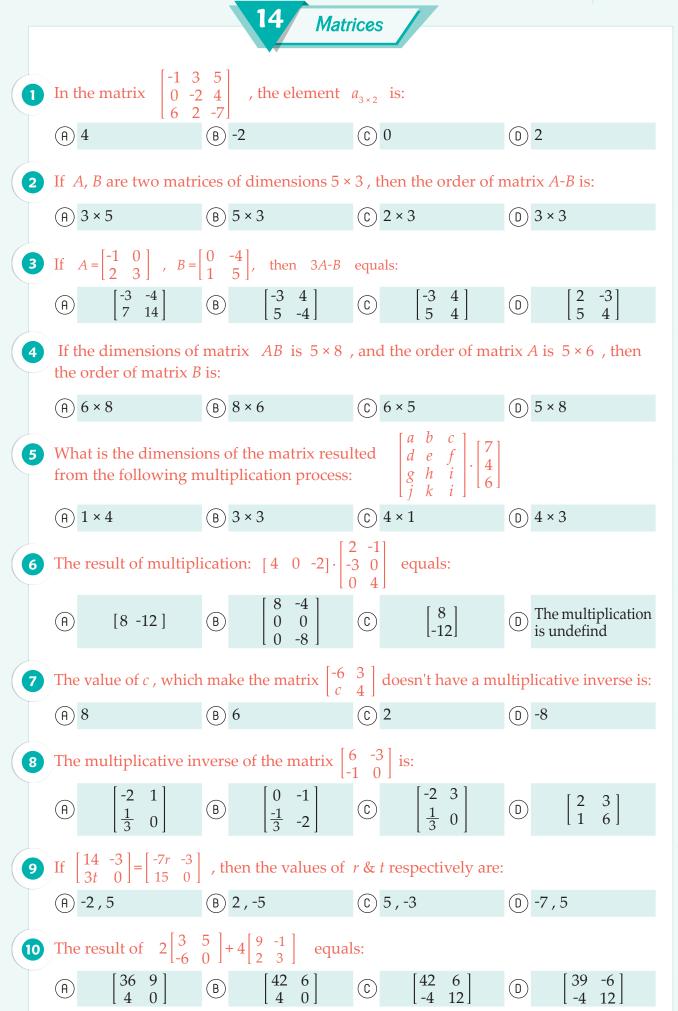

Six part: Experimental tests 119

The first experimental test121
The Second experimental test127
The third experimental test133
The fourth experimental test
The fifth experimental test145
The sixth experimental test151
The seventh experimental test157
The eighth experimental test163
The ninth experimental test169

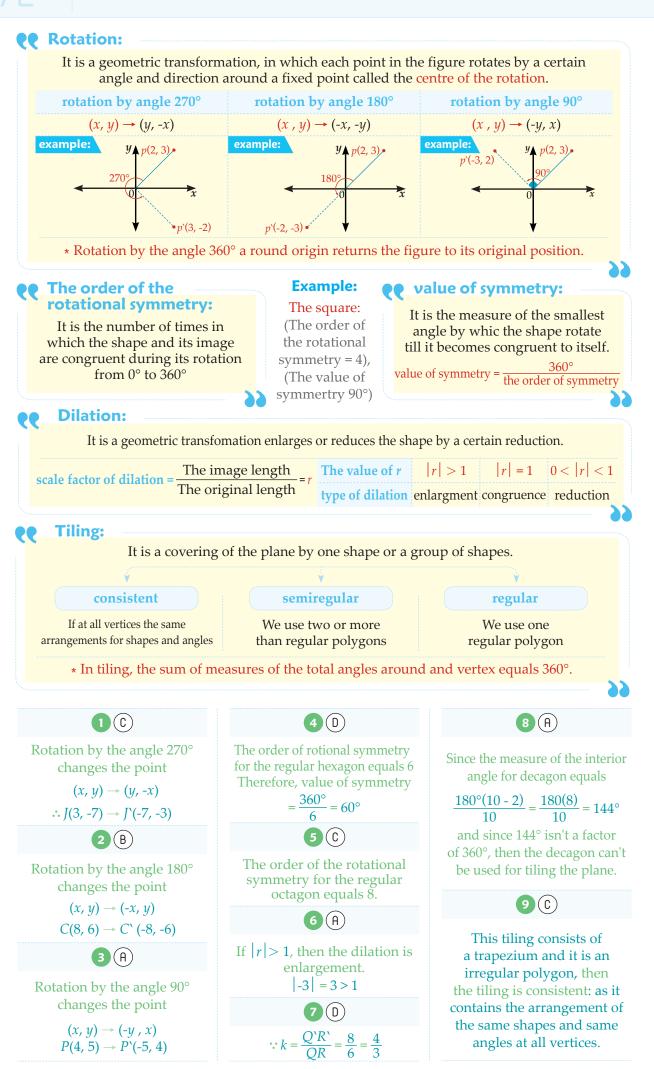

Answers of Experimental tests175


Answers of the first experimental test176
Answers of the Second experimental test179
Answers of the third experimental test
Answers of the fourth experimental test185
Answers of the fifth experimental test188
Answers of the sixth experimental test191
Answers of the seventh experimental test 194
Answers of the eighth experimental test 197
Answers of the ninth experimental test201

Algebra

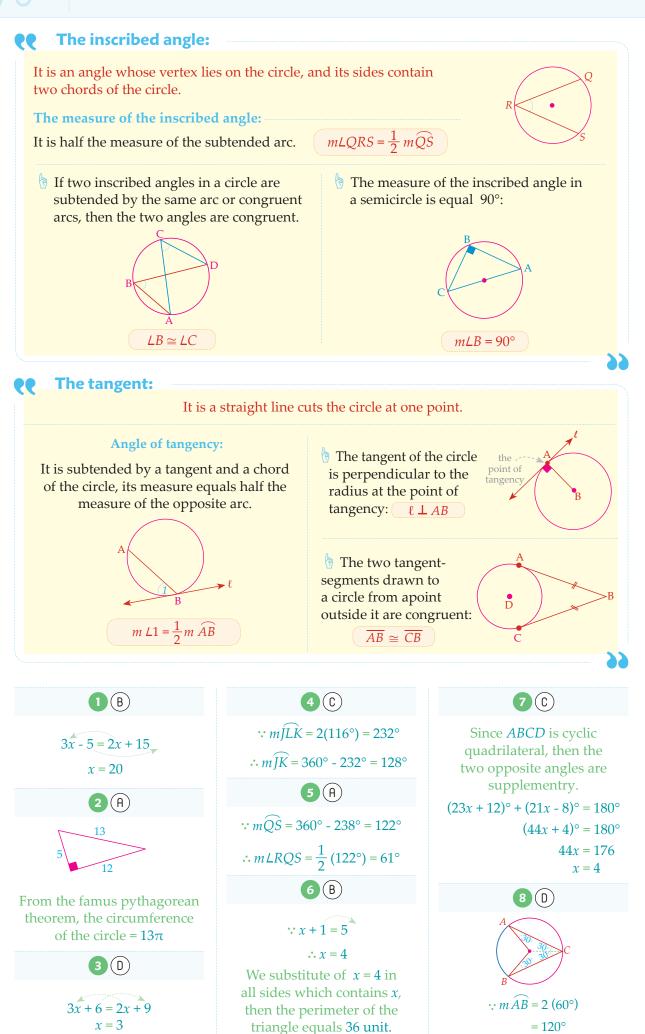


Excellence in SAAT Standard Achievement Admission Test (SAAT)


Algebra

• Third-order		
determinants: They are determinants of order 3 $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$	The area of the triangle 3×3 The area of the triangle vertices coordinate is (<i>a</i> , is the absolute value of as: $A = \frac{1}{2} \begin{vmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{vmatrix}$	e whose (c, d) = y (c, d), (e, f) of A.
To evaluate the dete	erminant of 3 × 3 matrix:	
diagonals, name it s_1 .	of the main diagonal elements and cts of the secondary diagonal elem e it s_2 .	g h i g h
Cramer's rule:		•
	$x = \frac{\begin{vmatrix} m & b \\ n & g \end{vmatrix}}{ \underline{C} } \text{ and } y = \frac{\begin{vmatrix} a & m \\ f & n \end{vmatrix}}{ \underline{C} } \text{ that if } C $	When $ \underline{C} = 0$, then the system has no unique solution.
1 (D)		
$\begin{vmatrix} 4 & 1 & 3 & 4 & 1 \\ -2 & 3 & 6 & -2 & 3 \\ 0 & 5 & -1 & 0 & 5 \end{vmatrix}$ = (-12 + 0 - 30)-(2 + 120 + 0) = -164	$\begin{array}{c} \textbf{3} \\ \textbf{A} \\ \hline \textbf{4} \\ \textbf{-1} \\ \textbf{-1} \\ \textbf{4} \\ \textbf{-5} \\ \textbf{-2} \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \\ \textbf{-2} \\ \textbf{0} \\ 0$	6 C $\therefore C = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = (-1) - (1) = -2$ $\therefore x = \frac{\begin{vmatrix} 5 & 1 \\ 1 & -1 \end{vmatrix}}{-2} = \frac{-6}{-2} = 3$ 7 D
$\begin{vmatrix} 4 & 1 & 3 & 4 & 1 \\ -2 & 3 & 6 & -2 & 3 \\ 0 & 5 & -1 & 0 & 5 \end{vmatrix}$ = (-12 + 0 - 30)-(2 + 120 + 0)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\therefore C = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = (-1) - (1) = -2$ $\therefore x = \frac{\begin{vmatrix} 5 & 1 \\ 1 & -1 \end{vmatrix}}{-2} = \frac{-6}{-2} = 3$

6 Rotation, Dilation and Tiling

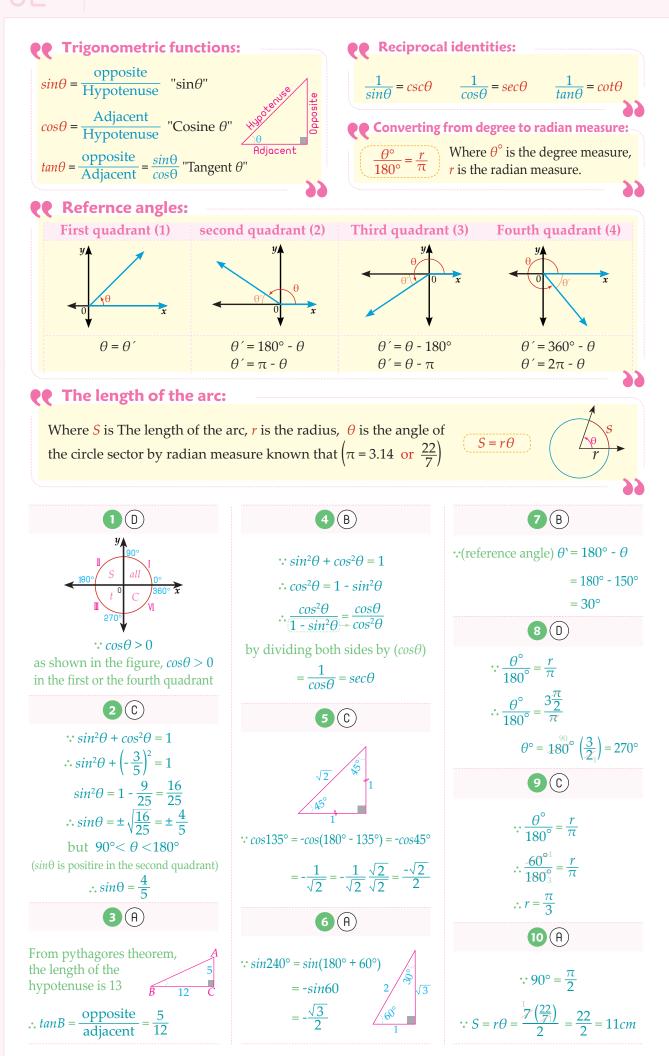

What is the image with an angle of th	of the point <i>J</i> resulted fi e measure 270?	rom rotation of ΔJKL	y 0 (k(1, -1)) x ↓ (L(5, -3)) ↓ (J(3, -7))
(-3, -7)	(-7, 3)	© (-7, -3)	D (7, -3)
and its image A'B'C'	e shows the quadrilater D' by rotation around the e of the angle of rotation	e origin point,	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
A 90°	B 180°	© 270°	D 360°
What is the image of	the point $P(4, 5)$ by rota	tion with an angle 90° a	around the origin point
A (-5, 4)	B (5, 4)	© (-4, -5)	D (5, -4)
What is the value of	of the rotational symme	etry of the regular he	xagon?
A 720°	B 180°	© 120°	D 60°
	f the rotational symmet		
(A) 135°	B 45°	C 8	D 6
If the scale factor o	f dilation is $k = -3$, th	en the dilation is:	
(A) enlargement	(B) congruent	© reduction	(D) translation
	<i>QR</i> by a dilation of sca r of the dilation <i>K</i> equa		R = 6 cm , Q'R' = 8 cm,
A 2	$\bigcirc \frac{3}{4}$	© 1.5	$\mathbb{D}\frac{4}{3}$
Which of the follov	ving polygons is not su	itable for tiling in the	plane?
(A) regular decago	n (B) regular hexagon	© square	D equilateral tridangle
Tiling in the oppos	ite figure, is called:		
(A) regular	B semi regular	© consistent	(D) inconsistent

75

		8 Circle	2	
	In the opposite figur	e; find the value of <i>x</i> ?		$\frac{U}{S} = \frac{U}{V} \frac{(2x+15)^{\circ}}{V}$
	(A) 30°	B 20°	© 15°	D 10°
2	What is the circumfe	erence of the circle in t	he opposite figure?	A 5 B 12 C
	(A) 13π	Β 10π	© 13	D 7.5
3	In the opposite figur	e; the value of <i>x</i> equa	ls:	$\frac{W}{z}$
	(A) 9	B 6	© 4	D 3
4	In the opposite figur	e; find $m \widehat{Jk}$?		
	(A) 232°	B 180°	© 128°	(D) 64°
5	In opposite figure; if	$m Q TS = 238^{\circ}$, the	n find <i>mLRQS</i> ?	
	(A) 61°	B 84°	© 119°	D 122°
6	In the opposite figur what is the perimete	e; A circle is inscribed r of this triangle.	l in triangle <i>RST,</i>	R 5 5 7 7 7 7 7 7 7 7 7 7
	A 33 unit.	B 36 unit.	© 37 unit.	(D) 40 unit.
7	In the opposite figur	e: what is the value o	f <i>x</i> ?	$B \xrightarrow{(21x - 8)^{\circ}}_{C} \xrightarrow{(23x + 12)^{\circ}}$
	A 22	B 12	© 4	D 3
8	In opposite figure; t	he measure of the arc	\overrightarrow{AB} equals:	A B B
	(A) 60°	B 80°	© 90°	(D) 120°

Algeby

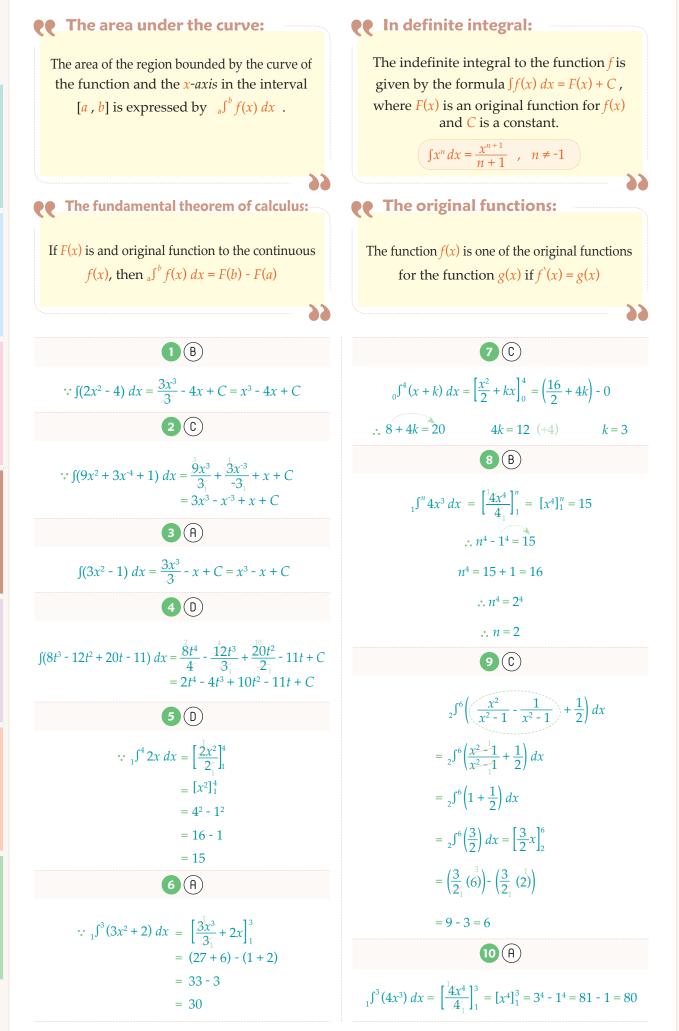
Geometry

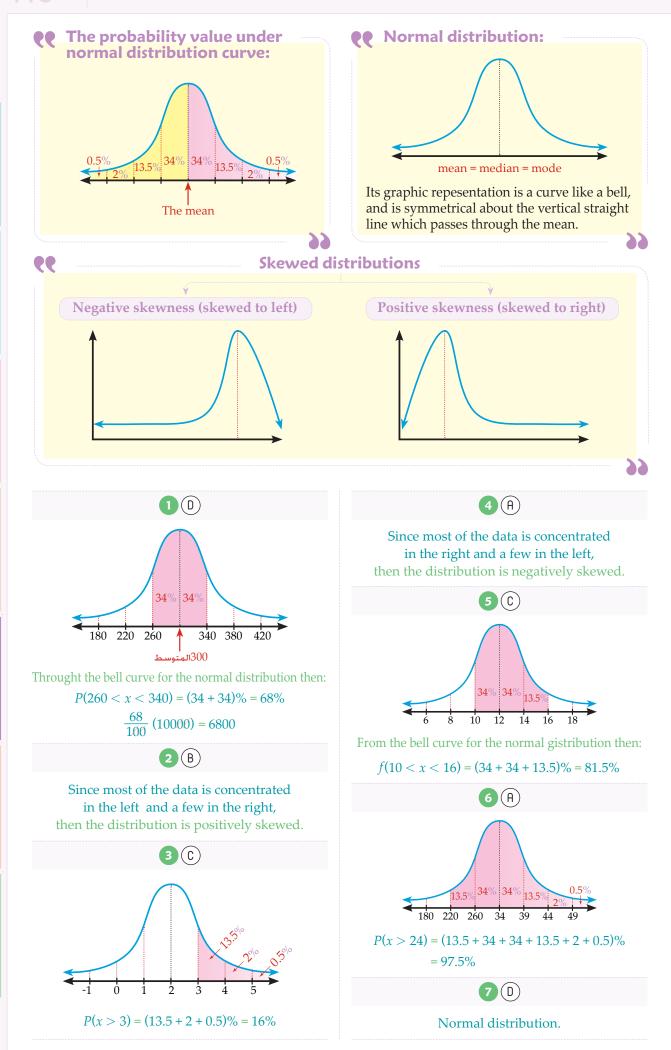

	12 Parabola					
	1 The parabola whose equation $x^2 = 8(y - 4)$ is opened to:					
	(A) right	B left	C down	D up		
2	The curve of the par	abola and it's axis of s	ymmetry are intersec	ting at:		
	(A) focus.	(B) vertex.	C directrix.	D not intersecting.		
3	The distance between the vertex and the focus of the parabola whose equation $(y - 3)^2 = 8 (x + 4)$ equals:					
	(A) 2 units	B 3 units	C 4 units	D 8 units		
4	The vertex of the par	rabola whose equation	n $(y-5)^2 = 12(x+3)$	is:		
	(-5, 3)	B (5, -3)	© (-3, 5)	(D) (3, -5)		
5	Find the length of the	latus rectum for the pa	arabola whose equation	n $(x-1)^2 = 10(y+7)$?		
	(A) 4	B 5	© 6	D 10		
6	In the parabola (u)	$(x - 5)^2 = -16 (x - 5)$, the	equation of the axis	of symmetry is:		
	$(\widehat{A}) y = -2$	(B) $y = 2$	(c) $x = 5$	(D) $x = -5$		
	(n) <i>y</i> 2	b) y - 2	$(\mathbf{c}) \mathbf{x} = 0$	$(\mathbf{U}) \mathbf{x} = -\mathbf{y}$		
7	In the parabola: $(y - y)$	$(+5)^2 = -12(x-2)$, the	equation of the direc	trix is:		
	(A) <i>x</i> = -5	B x = 5	© <i>y</i> = 2	D <i>y</i> = -2		
8	Find the equation of	the parabola whose v	vertex is (1, -4) and its	focus is (3, -4)?		
	(A) $(x - 1)^2 = -4(y - 4)$	(B) $(x - 1)^2 = 8(y + 4)$	(c) $(y - 4)^2 = -6(x - 3)$	(D) $(y+4)^2 = 8(x-1)$		
9	Determine the directi	on of opening of the p	arabola curve whose e	quation $y^2 = -8 (x - 6)$		
	A Down.	B Up.	C Left.	D Right.		

Parabola:

y/ The directrix axis of symmetry y = kA parabola is the set of all points (x, y) in The focus a plane that are the same distance from a fixed line, called the directrix, and a fixed Latus rectum The vertex point (the focus) not on the directrix. V (h, k) The Axis of The Focus length The The The symmetry directrix coord-The shape of the curve latus direction vertex equation equation equation inates rectum The parabola curve is opened horizontally $(y - k)^2 = 4c (x - h)$ (h + c, k) $\chi = h - c$ (h, k)y = k4cC < 0c > 0The parabola curve is $(x - h)^2 = 4c (y - k)$ opened vertically (h, k + c)y = k - cy = x(h, k)4cC < 0C > 0The vertex is the midpoint The distance between the The openning of the ¢ between focus and directrix. focus and the directrix is = 2cparabola always directed from the vertex to the focus **5**0 8 D The standard equation of from the figure: we get that The length of the latus rectum $\langle -\langle 4c \rangle = 10$ the curve of the parabola the axis of the parabola is whose axis is vertical is 6 (A) horizontal, c > 0 $(x - h)^2 = 4c (y - k)$ $(y - k)^2 = 4c (x - h), (y + 4)^2 = 8 (x - 1)$: The parabola since c > 0 $(y+2)^2 = -16(x-5)$ Then it opens upwards. its axis is horizontal. 2 (B) 8 : The equation of axis of F (3, -4) The curve of the parabola symmetry: *y* = *k* = -2 V(1, -4)and its axis of symmetry are 7 (B) intersecting at the vertex. -12 3 (A) : the parabola 9 (C) $(y+5)^2 = -12(x-2)$ $(y - 3)^2 = 8(x + 4)$ its axis is horizontal. $\therefore |4c| = 8 \implies c = 2$ The parabola $y^2 = -8(x - 6)$ \therefore then the equation of the its axis is horizontal. $\mathbf{4}(\mathbf{C})$ directrix: x = h - c $\therefore c < 0$ $\therefore 4c = -12 \implies c = -3$ $(y - 5)^2 = 12(x + 3)$: the opening of the parabola $\therefore x = 2 - (-3) = 5$ is directed to the left.

(h, k) = (-3, 5)


	1 Trigonometric Functions in Right Triangles					
	Suppose that θ is an angle in the standard position such that $\cos\theta > 0$, in which quadrant the terminal side of the angle θ lies?					
	(A) The first or the set	cond quadrant.	(B) The second or the third quadrant.			
	C The first or the th	nird quadrant.	D The first or the fo	ourth quadrant.		
2	What is the exact value of $\sin\theta$ if $\cos\theta = -\frac{3}{5}$, $90^{\circ} < \theta < 180^{\circ}$?					
	$\left(\begin{array}{c} A \end{array} \right) \frac{-4}{5}$	$\bigcirc \frac{\sqrt{34}}{8}$	$C \frac{4}{5}$	$\bigcirc \frac{5}{4}$		
3	If <i>LB</i> is an acute angle in the right angled triangle and $sinB = \frac{5}{13}$, then find the value of <i>tanB</i> ?					
	$\bigcirc \frac{5}{12}$	(B) $\frac{12}{13}$	$\bigcirc \frac{5}{6}$	D <u>25</u> 12		
4 which of the following is equivalent to the expression: $\frac{\cos\theta}{1 - \sin^2\theta}$?						
	(A) $cos\theta$	B secθ	\bigcirc tan θ	D cscθ		
5	Find the exact value of <i>cos</i> 135°?					
	(A) √2	$(B) \frac{\sqrt{3}}{2}$	$\bigcirc -\frac{\sqrt{2}}{2}$	D -√2		
6	What is the exact val	ue of <i>sin</i> 240				
	$(\widehat{A}) = \frac{\sqrt{3}}{2}$	$(B) - \frac{1}{2}$	$\bigcirc \frac{\sqrt{2}}{3}$	$\bigcirc \frac{\sqrt{3}}{2}$		
7	The reference angle f					
	(A) 15°	B 30°	© 45°	D 60°		
8	Find the degree measure of the angle with radian measure $\frac{3\pi}{2}$?					
	(A) 120°	B 180°	© 245°	D 270°		
9	The angle 60° in radi	an equals:				
	(A) π	$\bigcirc \frac{\pi}{2}$	$\bigcirc \frac{\pi}{3}$	$\bigcirc \frac{\pi}{6}$		
10	Find the length of the arc in a circle of radius 7 <i>cm</i> , if you know that the measure of the angle of its sector is 90° ?					
	(A) 11 <i>cm</i>	B 12 <i>cm</i>	© 13 <i>cm</i>	D 14 <i>cm</i>		


101

Limits

	1	Limits	
Find the value:	$\lim_{x \to 3} \frac{2x+4}{x-1}$		
$(A) \frac{1}{3}$	$\mathbb{B}\frac{1}{2}$	C 3	D 5
What is the value	e: $\lim_{x \to 4} \frac{\sqrt{2x+1} - \sqrt{7}}{x-3}$?	
(A) 3 + √7	B 3 - √7	© √7 - 3	D 3
Find the value:	$\lim_{x \to -1} \frac{4 - \sqrt{x^2 + x + 16}}{x^3 - 1}$?	
A 0	B -1	© -2	D -3
Find the value:	$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} ?$		
A -4	B 6	© 8	D 16
Find the value:	$\lim_{x \to 3} \frac{x^2 - 8x + 15}{x - 3} ?$		
A 5	B 0	© -1	D -2
The value of: L_{x-x}	$\lim_{x \to -4} \sqrt{x+3}$ equals:		
A 2	B 1	© -1	D Does not exist
The value of: L_{x-x}^{i}	$\lim_{x \to \infty} \frac{10x^3 - 12x}{5 + 3x^2 - 2x^3} $ is:		
A) -5	(B) -2	© 0	D x
Find the value:	$\lim_{x \to \infty} \frac{2x^2 - 5x}{7 - 3x^3} \; ?$		
$(A) \frac{2}{-3}$	$\bigcirc \frac{-3}{2}$	© 0	
$\lim_{x \to \infty} \frac{3x^4 - 2x + 7}{5x^2 + 9x} =$			
(A) 🗙	B 3	$\bigcirc \frac{1}{3}$	(D) 0
Evaluate the limi	t: $\lim_{x \to -\infty} (x^3 - 2x^2 + 5x)$	x - 1) ?	
A 1	B ∞	∞- ①	D Does not exist
Find: $\lim_{x \to -\infty} (5x^4 - $	3x) ?		
(A) 5			

Counting Principle, Permutations and Combinations 1) The menu in a restaurant has 5 types of main course, 4 types of soups and 3 types of sweets. How many different requests can be made if one chooses one main course, one kind of soup, and one sweet? (A) 12 (B) 35 (C) 60 (D) infinite number Nayef Can invite two of his friends to have dinner with him, if he has four friends, by how many ways he can choose them? (A) 4 (B) 6 (C) 8(D) 9 How many ways can a person enter a mosque which has five doors and exit from a different door? (A) 120 (B) 60 (c) 25 (D) 20 A car dealer shipped four types of cars, three different colors and two categories, in how many ways can a person choose a car of them? (A) 24 (B) 18 (D) 9 (c) 12 5 How many ways can 4 people sit a round table? (A) 24 (B) 12 (c) 9 (D) 66 The number of ways 6 people can sit a round table provided that someone sitting next to the window equal (A) 36 (B) 120 (c) 720 (D) 750 If n! = 120, then $(n - 1)! = \dots$ (D) 90 (A) 16 (B) 24 (c) 36 The board of directors of a company consists of 10 members. If Faisal, Mohamed and Muhannad are members of the board, what is the probabilily of selecting three as president, vice president and secretary, respectively, knowing that the selection is random? (A) $\frac{1}{720}$ (D) $\frac{1}{30}$ $\bigcirc \frac{1}{60}$ (B) $\frac{1}{120}$ 9 What is the number of sample elements for selecting two cards with replacement, from a set of numbered cards from 1 to 8? (A) 36 (C) 56 (B) 45 (D) 64 10 Khalid has a math test that asked him to answer 10 questions out of 12 questions, by how many ways can he choose the questions? (A) 50 (c) 70 (D) 100 (B) 66

Tests

(A) 45°	(B) 90°	© 60°	D 120°
The limit <i>L</i>	$\lim_{n \to 4} (4x - 1)$ equals:		
x	→ 4 () I (B) 8	© 12	(D) 15
	of the shadow of the mos ne length of its shadow is		
A 9	B 15	© 25	D 40
A 9		© 25	0 40
(A) 9 If the radius	B 15 of a circle is 4 units, are following points lie or	© 25 od the coordinates of it	0 40

	Excellenc	e in SAAT Standard Ach	ievement Admission Test (SA	
) , B(3, 5) , C(4, 1) a , then what is the coo		
A (-3, 7)	(B) (7, -3)	© (-1, -1)	(D) (-1, 3)
If L	$log_x 32 = 5$ then	what is the value of :	x?	
A 1		B 2	© 5	D 32
Wha	t is the measure	of the angle between	the two vectors <2 ,	0>,<3,3> ?
(A) 4		(B) 60°	(c) 90°	(D) 180°
TA 71-			(.). 2.2 F. 12 2	
	t is the derivativ $5x^2 - 5$	The of the function: $f(\mathbf{B} \ 6x^2 - 5x)$	$x = 3x^2 - 5x + 12$? (c) $6x^3 - 5$	(D) $6x - 5$
	<i>x</i> - 5		0 0 - J	<u>()</u> 0x - 3
If <i>y</i> varies driectly with <i>x</i> , and $y = 24$ when $x = 8$ then what is the value of <i>x</i> when $y = 48$?				
A 1	2	B 16	© 20	D 24

TPort

Answers of the first experimental test

1

A Q \bigcirc (A) \bigcirc B 1 \bigcirc B \bigcirc A 2 (A)0 \bigcirc 3 (B) (A)B \bigcirc 4 \bigcirc (\mathbf{A}) B ()5 \bigcirc (A) \bigcirc B 6 \bigcirc (\mathbf{A}) B D 7 0 \bigcirc B (\mathbf{A}) 8 **B** \bigcirc (\mathbf{A}) 9 (\mathbf{A}) B \bigcirc 10 \bigcirc (A)B C 11 (A) (\mathbf{B}) \bigcirc D 12 (\mathbf{A}) **B** \bigcirc D 13 \bigcirc A **B** \bigcirc 14 0 (\mathbf{A}) 15 (B) \bigcirc (A) \bigcirc B 16 \bigcirc B \bigcirc A 17 (A)B \bigcirc 18 (\mathbf{C}) (A)B \bigcirc ()19 \bigcirc (A)B \bigcirc 20 0 \bigcirc (\mathbf{A}) B 21 0 \bigcirc B 22 (A) B \bigcirc \bigcirc A 23 (\mathbf{A}) B \bigcirc D 24 (A)B \bigcirc

 \bigcirc

25

	80		
$\therefore S = \frac{a_1}{1 - r} = \frac{25}{1 - \frac{1}{2}} = \frac{25}{\frac{1}{2}} = 50$	The equation of the parabola $x^2 = 8(y + 3)$ opens upwards.		
$\frac{1}{2} \left(\frac{x - 1}{x - 5} \right) \left(\frac{2x - 2}{x - 1} \right) = 5$	9 A		
$\frac{1}{2} (x-5) (x-1) = 5$ $\frac{1}{2} (\frac{1}{x-5}) (\frac{2(x-1)}{1}) = 5$ $\frac{x-1}{x-5} = \frac{5}{1}$ $5x-25 = x-1$ $4x = 24 (\pm 4)$ $x = 6$ 3 C	$\therefore f(x) = \frac{3x-5}{2}$ $\therefore \frac{y}{1} = \frac{3x-5}{2}$ $3x-5 = 2y$ $3x = 2y+5 (\div 3)$ $x = \frac{2y+5}{3}$ $\therefore f^{-1}(x) = \frac{2x+5}{3}$		
	10 A		
$x^{\circ} = 60^{\circ}$ $x^{\circ} = 60^{\circ}$ $i j k i j j k i j j k i j j j j j j j j j$	5x + 5 x difference $< x < sum$ $5 - 5 < x < 5 + 5$ $0 < x < 10$		
= (2i + 0 + 0) - (-j - 4k + 0) $= 2i + j + 4k$			
5 D \overline{AE} represents a height of the triangle. 6 D	If we let $n = 1$ and $m = 3$ (as example) then $(n + m)^2 = (1 + 3)^2 = 16$ (divisible by 4) and $n^2 + m^2 = 1 + 9 = 10$ (even) hence, III is true, I is true but Π is not true		
$\frac{x-1}{x+1} = \frac{6}{5}$	12 B		
$\therefore 6x + 6 = 5x - 5$ $\therefore x = -5 - 6 = -11$	$n! = 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$		
7 C	13 D		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The image of the point (-1, 3) by reflection in the line $y = x$ is: (3, -1)		
2 -5 3 0	14 A		
The quotiet is $2x^2 - 5x + 3$	$E(3, 1) \xrightarrow[y+4]{x-3} F(0, 5).$		